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Appendix J: Derivation
of the Time Domain Solution
of State Equations

@ ).1 Derivation

Rather than using the Laplace transformation, we can solve the equations directly in
the time domain using a method closely allied to the classical solution of differential
equations. We will find that the final solution consists of two parts that are different
from the forced and natural responses
First, assume a homogeneous state equation of the form

x(t) = Ax(t) (J.1)
Since we want to solve for x, we assume a series solution, just as we did in elementary
scalar differential equations. Thus,

x(t) =bo + by + bztz + -+ bktk + bk+1tk+1 R (1.2)
Substituting Eq. (J.2) into (J.1) we get

b1 +2byt + -+ + kbyt* !+ (k + Dby th + - - 3
= A(by + byt +bor? + - 4 btk + by K ) :

Equating like coefficients yields

b1 = Ab() (J.4a)
1 1
= _Ab; = - A’ 4
b2 ) bl ) bO (J b)
1 k
bk = FA b() (J4C)
1

AFtlp, (J.4d)

bt = )



E1BAPP10

11/02/2010

12:18:0

Page 2

Appendix J: Derivation of the Time Domain Solution of State Equations

Substituting these values into Eq. (J.2) yields

1 1
x(t) = by + Abgt + = A%br* + - - + — Afpot* + ARkl 4

i 1 kll (k;r Y =
_ (I+Af+§A212+"'+HAkfk+mAk+lka +-~->b0
But, from Eq. (J.2),
x(0) = by (3.6)"
Therefore,
x(1) = (I A A g B ARy ke ) x(0) (.7
2 k! (k+1)!
Let
M = <I+At+;A2t2 +-- +%A"t" T 1>!A"“t"“ +- > (J.8)

where e*' is simply a notation for the matrix formed by the right-hand side of Eq.
(J.8). We use this definition because the right-hand side of Eq. (J.8) resembles a
power series expansion of e”, or

1 1 1
at: 1 t — 2[’2 e —_ ktk _—
e ( +a +2a + +k!a +(k+1)!

ak+ltk+l 4. > (J9)
Using Eq. (J.7), we have
x(t) = ex(0) (J.10)

We give a special name to ¢": it is called the state-transition matrix®, since it performs
a transformation on x(0), taking x from the initial state, x(0), to the state x(¢) at any
time, 7. The symbol, ®(¢), is used to denote ¢*’. Thus,

D(1) = A (J.11)
and
x(t) = ®(t)x(0) (J.12)

There are some properties of ®(¢) that we will use later when we solve for x(¢)
in the text. From Eq. (J.12),

x(0) = ®(0)x(0) (J.13)
Hence, the first property of ®(z) is
®0) =1 (J.14)

!In this development we consider the initial time, 7y, to be 0. More generally, 7, # 0. After completing this
development, the interested reader should consult Appendix K on www.wiley.com/college/nise for the
more general solution in terms of initial time ¢y # 0.
2 The state-transition matrix here is for the initial time #, = 0. The derivation in Appendix K on www.wiley.
com/college/nise for fy # 0 yields x(¢) = eAt=)x(ty).
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where Iis the identity matrix. Also, differentiating Eq. (J.12) and setting this equal to
Eq. (J.1) yields

x(1) = ®(1)x(0) = Ax(r) (J.15)
which, at ¢ = 0, yields
®(0)x(0) = Ax(0) (1.16)
Thus, the second property of ®(¢) follows from Eq. (J.16):
®0)=A (J.17)
In summary, the solution to the homogeneous, or unforced, system is
x(t) = P(1)x(0) (J.18)
where
D(0) =1 (J.19)
and
®0)=A (3.20)

Let us now solve the forced, or nonhomogeneous, problem. Given the forced
state equation

x(1)Ax(t) + Bu(t) (J.21)
rearrange and multiply both sides by e *":
e AX(1) — Ax(1)] = e ABu(t) (J.22)
Realizing that the left-hand side is equal to the derivative of the product e *'x(r), we
obtain
d
7 [e4x(t)] = e *'Bu(r) (J.23)
Integrating both sides yields
t
[ex(0)] /g = e (1) — x(0) = / e A"Bu(r)dr (J.24)
0

since e ' evaluated at ¢ = 0 is the identity matrix (from Eq. (J.8)). Solving for x() in
Eq. (J.24) we obtain

x(t) = e A%x(0) + /reA(’f)Bu(t)dr
(J.25)

0
t
®(1)x(0) + | P(r— 7)Bu(r)dr
0
where ®(f) = e*’ by definition.
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